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Enhanced Source Removal
Using In-Situ Chemicalwklushing

A. Lynn Wood

U.S. Environmental Protection Agency

National Risk Management Research
Laboratory
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v Description of in-situ chemical flushing

v Effectiveness for DNAPL removal

v Benefits of DNAPL mass reduction

v Integrated source remediation with ISCE




In-Situ Chemical Flushing
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e Definition

— Displacement of fluid containing
chemical adjuvants through
contaminated solils or aquifersiin
order to enhance contaminant
removal by enhanced dissolution or
mobilization

e Example Adjuvants
—-Surfactants
—Co-solvents
—Complex Sugar
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NAPL Removal Effectiveness (&)
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Efficiency Constraints
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v' Hydrodynamic variability )

v DNAPL architecture

v Remedial fluid properties > Mixing
density
VISCOSIty

v' Inadequate Characterization/
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Field Results

* Est. Mass
Site DNAPL Agent Reduction
1l AFB OU2  TCE Surfactant 0.98
“ TCE Surfact/foam 0.90
Camp Lejuene PCE Surfactant 0. 72
Sages PCE Cosolvent 0.63
Dover PCE Cosolvent 0.64
Z cc Surfactant 0.67
2 c Cosolvent ?
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Mass Reduction vs Mass Flux
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_—’ Control
Rlane

Pre-Remediation:
ﬂ”)ontaminant

Flux (3
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Least contaminated

Source Zone
Control
Plane

Post-Remediation:

Ii ontaminant

Contaminant flux = f (Hs, DA)
HS - hydrodynamic structure

DA — DNAPL architecture

Source Zone




Mass Reduction vs Mass Flux
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Ethanol In-Situ Flushing Test
0.8 Dover AFB (PCE Release)

0.6

Fractional Flux Reduction
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PLUME RESPONSE
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Pre-Remediation:

DNAPL
Source
one

Control Plane Compliance Plane N

Partial Mass Removal:

DNAPL
Source
Zone

Control Plane ompliance Plane
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Conceptual Model
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r Source Remediation j

Mass Reduction > System Response
<
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Plume Response
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Risk Response




Integrated Source Remediation:

Chemically Augmented NA (CANA)

r Chemical Flushing —l

Mass Reduction >  Enhanced NA
<

|_> Flux Response <«——
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Pre-Remediation:
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DNAPL
Source
Zone

Control Plane Compliance Plane

Partial Mass Removal:

DNAPL
Source
Zone

Control Plane ompliance Plane

Partial Mass Removal + Enhanced}Natural Attenua

DNAPL = T
Source =
Zone Z_

Control Plane

Compliance Plane
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Integrated Source Remediation:

- Target DNAPL Source Zone

- Integrate Remediation Technologies
INto a Treatment Train for

Comprehensive Site Restoration

- Decrease Remediation Costs




Integrated Source Remediation:

Solvent Extraction Residual
Biotreatment (SERB)

:
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Field Demonstration: SagesSite

» CoSolvent Extraction (SE)

Selective removal of DNAPL (PCE)
by cosolvent flushing with ethanol

- Residual Biotreatment (RB)
Passive removal of dissolved phase PCE
by enhanced reductive dechlorination
(biodegradation)
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Cosolvent Flush Performance* (

-~

Pre-Cosolvent Flush Partitioning- Tracer 68 L (PCE)

Post-Cosolvent Flush Partitioning Tracer.. 26 L (PCE)

Estimated Recovery Based on 42 L (RCE)
Partitioning Tracer Tests (62%)

Mass Recovery Based on PCE 43 L (PCE)
Concentrations in Recovery Wells (63%)

Mass Recovery Based on Post/Pre Cores (65%)

* Jawitz et al., 2000




Residual Biotreatment Performance
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(500 uM = 83 mg/L)
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Residual Biotreatment Performance
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cis-DCE @75uM =17 mgiL)

Pre-Ethanol Flush ~1 Month Post-Flush
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OBSERVED PLUME RESPONSE
SAGE’S DRY CLEANER SITE (5

Pre-Ethanol Flush

~25 Months Post-Flush
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K (1/ yr) L5 (yr)
M cis-DCE 0.81 0.9

PCE -0.56 1.2
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Summary
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e Substantial DNAPL mass reduction can be
achieved using ISCF

e Complete mass removal is generally not
economically or technically feasible

e Correlation between mass reduction‘and
mass flux is poorly understood

e Integrated DNAPL remediation approaches

that incorporate technology coupling
(treatment trains) are needed to improve
efficiency and reduce costs




